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The possibility of presenting the solution of the problem of the compression of a three-dimensional layer by two rough plates, 
if use is made of Prandtl’s assumption of a linear variation of the shear stresses over the thickness (not depending on the coordinates 
along the plates), is analysed. The case of an anisotropic material with a yield point obeying Hill’s condition is also considered. 
0 2001 Elsevier Science Ltd. All rights reserved. 

The asymptotic Prandtl solution [l] for a plane layer of ideally plastic material compressed by rigid 
rough plates has provided the main concepts of the nature of the pressure distribution and has been 
used as the basis for many investigations of the theory of plastic metal forming Ivlev [2], using the 
condition of full plasticity of Haar and Karman [3], proposed an extension of the Prandtl solution to 
the case of the three-dimensional state of the layer. Below, we consider the compression of an ideally 
plastic layer in the case of the non-collinear direction of the contact friction on the surfaces of the 
compressing plates. The influence of shear stresses on the magnitude of the limit compressing force in 
the case of an ideally plastic anisotropic material is also investigated. 

1. THE COMPRESSION OF AN IDEALLY PLASTIC ISOTROPIC LAYER 

The condition of full plasticity proposed by Haar and Karman [3] 

q =os, 63 = (T, +2k, k = const (1.1) 

(where oi are the components of the principal stresses, and k is the shear yield point) can be written 
in the form [4] 

cr, =a-$+2knf, T,,, =2kn,n2 (xyz, 123) 

n; + fz; + n; = I, 0 = 0, = Cr.2 (1.2) 

where a,, To, . . . are the components of the stresses in the Cartesian coordinates system ofxyt, and nt, 
n2 and n3 are the direction cosines determining the orientation of the third main stress u3 in space xyz. 
Here and below, the symbol (xyr, 123) denotes that the relations obtained by circular permutation of 
the given indices should be added to the relations written. 

Relations (1.2) can be rewritten in the form 

or =cT- (1.3) 

We will consider a layer of plastic material of thickness 2h and introduce a Cartesian system of 
coordinates, so that the boundaries of the layer correspond to z = hl and z = h,; hl -t h2 = Uz. 
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Following Prandtl [ 11, we assume a linear variation of the shear stress over the layer thickness 

rXz =uz+c,, zyz =bz+c,, u, 6. cl, c2 =const (1.4) 

From relations (1.3) and (1.4) we obtain 

TV = (uz+c1)(bz+C2) 
(az + cl)2 + (bz + c2) 

2 [k*(k2-(~+c*)2_(~z+C2)2)Y2] 

0, ,o_2k+, - az+q 
3 xy bz+c, 

o _,_2k+z bz+c2 
Y- 3 *y az + c, 

0, 2% =cJ 3 +~(uz+c,)(bz+c,) 
XY 

From the equilibrium equations 

ao, % a-r 
ax 

+-+A =o (xyz) 
ay at 

and relations (1.4) and (1.5) we obtain 

a=--ax-by+C+ 
2k z,=yz 
---. C=const 
3 Txy 

=xyTxz z,=yz 
o, =-ax-by+C+--- 

‘5 
YZ % 

(Jy =-ar_~y+~+‘F,z,_~ 

T 
xz z 

XY 

o,=-ax-by+C 

where T xy, TV and T,,* are defined by relations (1.4) and the first relation of (1.5). 
From the last equality of (1.6) it follows that 

grad o, = -ui - bj 

where i and j are unit vectors along the x and y axes. 
We will introduce orthogonal coordinates 

5=xcosO+ysin8, n=--xsintII+ycose 

Then 

(1.5) 

(1.7) 

(1.8) 

<T, =+/u2+b2 +C w 

We will give plus and minus signs respectively to the stress components on the sides of the layer, 
On the upper and lower sides of the layer, z = h, and z = -h2, from (1.4) we obtain 

r:z =ah, +c,, $ =bh, +c2, z=h, 

=, =uh2+cl, zJZ =-bh2+cp, z=-h, (1.10) 

The vectors of the shear stresses and the magnitudes of the resulting shear stresses on the sides of 
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the layer will have the form 

1017 

(1.11) 

7+&+J (ah, +c$ +(bh, +c,)2 =k, s 1 

T,=~~=d(-ah2+c,)2+(-bh2+q)2 =k,Sl (1.12) 

The angle cp between vectors Tr and T2 and also their directions, by (1 .lO) and (1.1 l), are determined 
from the relations 

=i .‘G 
coscp=K= 

c; + c; - (a2 + b2)h& + @,a + c,b>Ch, - 4) 

w2 

(1.13) 

r+ bh, + c2 QIv, =yz=- 
c, ah, + cl ’ 

(1.14) 

The quantities a, b, cl and c2 are determined by specifying the quantities kr, k2, kL1 and ~2. 
The case where cl = c2 = 0 and pl = ~~ was examined earlier in [2]. 
We will assume that the vector Tr is directed along the x axis. Then, from (1.10) (1.11) and (1.13), 

we obtain 

2bh 
sincp=-- 

k2 

From the last two equations we express a and b in terms of kl and k2, and from (1.9) we obtain 

crz =-&(k;+k;+2k,k,cos&~+C (1.15) 

The equation of the line parallel to which the pressure a, varies, by relations (1.8), has the form 

y=bX= 
k2 sin cp 

X 

k, +k, coscp 
(1.16) 

U 

When k, = k2 = k we have 

k 
0, = -,scos;+ c, cp y = tg-x 

2 (1.17) 

i.e. in this case the pressure a, increases linearly along the bisector of the angle between the directions 
of the stress vectors Tr and T2. 

The case cp = 0 corresponds to the Prandtl solution [l] 

q=-;x+c, 5=x, 2, c,=b=c2=0 (1.18) 

When cp = ~12 we have 

6, ++c, &x+y, 
2 

(1.19) 

i.e. the pressure variation occurs along lines parallel to the line y = X. 
To determine the constant C, it is necessary to use assumptions on the integral nature of the force 

distribution on the edge of the plate [5]. 
The relations determining the kinematics of plastic flow can be written in the form [4] 

(1.20) 
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Ex + Ey + E, = 0 

where e,, eY, . . . are the components of the rate of plastic strain. 
The solution is defined in the form 

U=p,x+q,y+u(z), V=p2x+q2y+u(z), 

w=pz 

where U, V and Ware components of the rate of displacement. 
Using expressions (1.2) and (1.21), we can give relations (1.20) the form 

(1.21) 

(1.22) 

z 91 +Pz u’ -++++ 
z z 

(1.23) 
IL XY 

where the prime denotes a derivative with respect to z. The components of the shear stresses u are 
determined from relations (1.5) and are functions of the z coordinate. The two equations of (1.23) define 
the two continuous functions, u(z) and u(z). 

Thus, from relations (1.5), (1.22) and (1.23) and the equilibrium equations, the components of the 
stresses and of the rates of strain can be determined. 

We will consider the case when the Prandtl solution (1.18) has superimposed upon it the shear forces 

s 4% T 

xz=--9 yz h 
=k,, kf+k,2=k2 

where k2 = 0 corresponds to the Prandtl solution. 
From relations (1.3) and (1.24) we obtain 

z ny = 
k+dm 

(k,zj2 + k; 
w2z 

(1.24) 

(1.25) 

The shear forces ryz = k2 lead to the appearance of stresses TV (1.25) determining the torsion along 
they axis. The torque per unit length can be determined from the relation 

M = 2 i’ qyzdz 
-hz 

According to the last relation of (1.24) and (1.25), the nature of the distribution of the compressive 
stress 

Q* - --#iq)x+C (1.26) 

remains linear, and the shear force 7yz = k2 influences the slope of the line determining the dependence 
of a, on the x coordinate. The shear force rY = k2 also influences the value of the constant C, which 
is determined from the equilibrium conditions on the free edges of the layer. For the free edge of the 
stripx = 0, we must put 

hl 
J o,dy=O when x=0 

-hz 
(1.27) 

The stress u, is determined from the second relation of (1.5) and equalities (1.24). 
When k2 = k, by (1.24) kl = 0, and relations (1.24), (1.25) and (1.6) take the form 

=x =C+k, CT,=C, z~~=T~~=O, ‘tyz=k 

From (1.27) and the first relation of (1.28) it follows that 

C=-k 

(1.28) 

(1.29) 
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and the limiting stress state of the layer, when the condition of complete plasticity is satisfied, according 
to relations (Ll), (1.28) and (1.29), has the form 

oT, =o, (3, =oz =-k, rxy =rx* =o, 0% =k (1.30) 

2. THE CASE OF AN ANISOTROPIC MATERIAL 

For an anisotropic material, the yield point k (1.1) depends on the extension direction [2] 

61 =o* =o, o3 = 2k(ni, “2, ns) 

We will assume that the surface of the yield points in xyz, space is defined in the form [6] 

(2.1) 

No, - or)2 + B(0, - Q2 + C(0, -Q2 +6(Fz;+Gr;+Hr;J=6k,2 (2.2) 

where A, B, C, F, G, H and k. are constants. 
From (2.1) and (2.2) we obtain 

k2(n,, n2. n3)= $(A($ -n.j)2+B(ni-n,2)2+ 

+C(ni - nF)2 + 6(F(n,n2)2 + G(n2n312 + Wn3q )2)1-’ (2.3) 

In the case of extension along the x, y or z axis, we have nl = 1, n2 = n3 = 0; nl = n3 = 0, n2 = 1; or 
nl = n2 = 0, n3 = 1 respectively. From (2.3) 

k: =k2(1, 0, 0)= 
3k,f 

2(A + C) 
(123,ABC) 

We will then have 

k; = k2(0, 1, 0). k; = k2(0, 0, 1) 

k; = k2($ -$ 0)= B+z6F (456, ABC, FGH) 

(2.4) 

(2.5) 

From relations (2.4) and (2.5) we find 

A=;k;($++-a) (123, ABC) F=k&-&) (123, 456, FGH) (2.6) 

According to relations (2.6), the form of the limit surface is determined entirely by the yield points 
kl, k2, k3, k4, k5 and kg. The yield point k(nl, n2, n3) in any direction, determined by nl, n2 and n3 
according to (2.3)-(2.7), is determined by setting the yield points kj, i = 1,2, . . . ,6. 

From relations (1.3) and (2.2) we find 

T”[(A+B)(~~+(A+C)[$~A+~F]- 

-~T;J(B-~G)T; +(C-3H)z;, +3k,fl+(B+C)+; =0 
(2.7) 

Adopting assumption (1.4), from (1.5) and (2.7) we have 

%y = .5X@). (2.8) 

According to relations (1.3) (1.4) and (2.8), the quantity k = k(nl, n2, n3) is a function of the single 
variable z. Consequently, equalities (1.3) and (1.4) and the equilibrium equations lead to the last three 
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expressions of (1.6). The magnitude of the compressive pressure will be determined according to the 
last equality of (1.6) 

q=--ax-by+C (2.9) 

The form of the anisotropy has no influence on the nature of the pressure distribution, determined 
by u,. In expressions for the components a, and yY (1.6) the influence of the anisotropy, according 
to (1.4) and (2.3, is determined by TV (2.7) and the influence of the anisotropy appears in the magnitude 
of the constant C, (1.6) and (2.9) which is determined from the boundary conditions. 
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